

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2019

ELECTRICAL TECHNOLOGY: ELECTRONICS

MARKS: 200

TIME: 3 hours

This question paper consists of 13 pages including a formula sheet.

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Sketches and diagrams must be large, neat and fully labelled.
- 3. ALL calculations must be shown, and correctly rounded off to TWO decimal places.
- 4. Answers must be numbered correctly according to the numbering system used in this question paper.
- 5. Non-programmable calculators may be used.
- 6. A formula sheet is provided at the end of the question paper.
- 7. Write neatly and legibly.

2

(EC/NO	YEMBER 2019) ELECTRICAL TECHNOLOGY: ELECTRONICS	3			
QUESTION 1: OCCUPATIONAL HEALTH AND SAFETY					
1.1	Describe the term 'regulation' with respect to the OHS act.	(2)			
1.2	Name TWO unsafe acts that may result in an injury in an electrical workshop.	(2)			
1.3	Explain the term Ergonomics.	(2) [6]			
QUE	QUESTION 2: TOOLS AND MEASURING INSTRUMENTS				
2.1	Explain TWO purposes of an oscilloscope.	(2)			
2.2	Describe the purpose of a jigsaw.	(2)			
2.3	State the maximum distance between the tool rest and the grinding wheel.	(1)			
2.4	Give ONE advantage of using a power factor meter.	(1)			

(2)

(4)

(3)

QUESTION 3: COMMUNICATION SYSTEMS

- 3.1 Define the term *modulation* when used in radio transmission. (2)
- 3.2 Give TWO advantages of a continuous wave (CW).
- 3.3 Explain the operation of a regenerative receiver.
- 3.4 Refer to figure 3.4 below and label blocks 1–3.


```
FIGURE 3.4
```

3	8.8	Describe the purpose of a continuous wave transmitter (CW)	(3) [26]
3	8.7	List THREE stages of phase locked loop.	(3)
3	8.6	Describe the TWO applications of single sideband transmitter (SSB)	(2)
3	8.5	Draw a block diagram of a single sideband transmitter.	(7)

(EC/NO	/EMBER 20	19) ELECTRICAL TECHNOLOGY: ELECTRONICS	5
QUE		4: WAVEFORMS	
4.1	Name	THREE types of waveforms.	(3)
4.2	With re	eference to waveforms, define the following terms:	
	4.2.1	Instantaneous value	(3)
	4.2.2	Rise time	(3)
	4.2.3	Average Value	(3)
	4.2.4	Root Mean Square Value	(3)
	4.2.5	Form Factor	(2)
4.3		wave has a maximum voltage value of 12 V and a cycle time of 20 ms. ate the frequency of the waveform.	(3)
4.4		eference to an integrator circuit, explain why a square wave input will be a triangular wave output.	(3)
4.5	Explai	n THREE reasons for using diode clipping circuits.	(3) [26]

QUESTION 5: RLC CIRCUITS

5.1	Define t	he term <i>vector</i> .	(1)
5.2	Explain what will happen to the following reactances if the frequency of the supply voltage decreases.		
	5.2.1	Capacitive reactance.	(1)
	5.2.2	Inductive reactance.	(1)

Refer to the circuit diagram in FIGURE 5.3 and answer the questions that 5.3 follow.

FIGURE 5.3 SERIES RLC CIRCUIT

Given:	R	= 60 Ω
	X_{L}	= 175 Ω
	X_{C}	= 200 Ω
	V	= 280 V
	f	= 200 Hz

Calculate:

5.3.1	The impedance of the circuit	(3)
5.3.2	The supply current	(3)
5.3.3	The true power	(3)
5.3.4	The reactive power	(3)
5.3.5	Apparent power	(3)
5.3.6	Power factor	(2)

6

5.4 A series circuit consists of a 50 Ω resistor, current of 0,2 A, an inductance of 40 mH and a capacitor of 5 μ F connected to sinusoidal supply voltage with a constant output of 10 V

Calculate:

5.4.2	The inductive reactance at resonance	(3) [26]
5.4.1	Resonant frequency	(3)

QUESTION 6: SEMICONDUCTOR DEVICES

6.1	Define the following terms:		
	6.1.1	Doping	(1)
	6.1.2	Extrinsic Material	(2)
	6.1.3	N-TYPE semiconductor	(2)
6.2	Explain	the term <i>Minority charge carrier</i> with reference to an N-Type material.	(2)
6.3	Explain	how a depletion region is formed in a diode.	(3)
6.4	Name t	he THREE stages of operation of a silicon diode.	(3)
6.5	Name ⁻	TWO important pieces of information you can read on a data sheet.	(2)
6.6	Explain	the principle of operation of a zener diode.	(2)
6.7	A circuit consists of a 12 Vdc supply, a diode and a load of 15 Ω . Answer the following questions.		
	6.7.1	Calculate the maximum current for this diode.	(3)
	6.7.2	Calculate the maximum voltage for this diode.	(2)
6.8	Draw a	fully labelled symbol diagram for an NPN Transistor	(4)
6.9	Name ⁻	TWO applications of a transistor	(2)
6.10	Name t	he TWO regions a transistor operates in.	(2)
6.11	Explain	TWO methods of switching an SCR on.	(4)
6.12	Explain the principle of operation of a DIAC. (
6.13	Draw a fully labelled symbol of a DIAC. (4		
6.14	Name t	he advantage of a TRIAC compared to an SCR.	(2) [46]

QUESTION 7: POWER SUPPLIES

- 7.1Describe the operation of a half wave rectifier.(3)
- 7.2 List THREE types of filters.
- 7.3 Refer to FIGURE 7.3 below and answer the following questions.

		[20]
Draw t	he block diagram of a series regulator.	(4)
7.3.3	Determine the output load current.	(4)
73.2	Calculate the regulated current flowing out of the zener diode	(3)
7.3.1	Determine the current flowing through the series resistor	(3)

7.4

(3)

QUESTION 8: SENSORS AND TRANSDUCERS

8.5	Define the term <i>transducer</i> .	(2) [12]
8.4	Name TWO types of thermistors.	(2)
8.3	Explain the purpose of a photodiode in an electric circuit.	(3)
8.2	Explain the operation of a humidity sensor	(3)
8.1	Describe the application of a proximity sensor	(2)

(2)

(2)

(3)

(2)

(3)

QUESTION 9: AMPLIFIERS

- 9.1 Explain the term *feedback*.
- 9.2 Explain the importance of correct biasing of a transistor when used as an amplifier.
- 9.3 Refer to FIGURE 9.3 below and answer the following questions.

FIGURE 9.3

Calculate the following:

- 9.3.1 The voltage gain.9.3.2 The current gain.
 - 9.3.3 Power gain of the circuit.
- 9.4 Refer to FIGURE 9.4 below and answer the following questions

FIGURE 9.4: A BASIC AMPLIFIER

Explain the purpose of:

- 9.4.1 The voltage amplifier.
- 9.4.2 Current amplifier.

(3)

(1)

<u>12</u>	ELECTRICAL TECHNOLOGY: ELECTRONICS (EC/NOVEMBER :	<u>2019)</u>
	9.4.3 Power amplifier.	(2)
9.5	Draw the circuit diagram of a voltage divider biased amplifier.	(4)
9.6	Name THREE transistor operation regions.	(3)
9.7	List THREE advantages of positive feedback.	(3)
9.8	Draw a fully labelled circuit diagram for fixed based bias with thermal stabilising emitter resistor	(4) [32]
	TOTAL:	200

ELECTRICAL TECHNOLOGY

FORMULA SHEET

WAVE FORMS	RLC CIRCUITS
Frequency	Inductive reactance
$f = \frac{1}{T}$	$X_L = 2\pi F l$
Maximum value	Capacitive reactance
$V_{MAX=} V_{RMS} \times 1,414 (V)$	$X_C = \frac{1}{2\pi fc}$
RMS Value	Impendance
$V_{RMS} = V_{MAX} \times 0.707$	
Average value	$z = \sqrt{R^2 + (X_L - X_C)^2}$
$V_{ave} = V_{max} \times 0.637$	Power factor
E = BlV	$COS \ \theta = \frac{R}{Z}$
	$COS \ \theta = \frac{VR}{VZ}$
POWER SUPPLIES	AMPLIFIERS
$Vave = Vpk - \frac{1}{2} V_{RIP P-P}$	$V_{CE\ max} = V_{VCC}$

 $Vave = Vpk - \frac{1}{2} V_{RIP P-P}$ $V_{CE max} - V_{VCC}$ $V_{OUT} = V_Z$ $V_{CC} = V_{CE} + I_C R_C$ $V_{OUT} = V_Z - V_{BE}$ $I_C = \beta I_B$ $I_L = I_E (\beta + 1)I_B$ $A_V = \frac{Output \ voltage}{input \ voltage}$

$$A_I = \frac{output\ current}{input\ current}$$